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1. Examples of symplectic resolutions

There are three families of symplectic resolutions: Nakajima quiver varieties, Slodowy vari-
eties and transversal slices in affine Grassmannians. In this talk, we will concentrate on two of
these families – quiver varieties and slices in affine Grassmannian. The main result of this talk
is isomorphisms between these families in type A. These isomorphisms can be thought of as a
geometric incarnation of a Howe duality.

Remark 1.1. It follows from the results of Maffei ([Maf]) that in type A Slodowy varieties are
isomorphic to quiver varieties of type A so these three families of symplectic resolutions coincide
in type A.

1.1. Nakajima quiver varieties. We start with a quiver Q = (I,Ω) with vertices I and
arrows Ω.

Passing to the Nakajima (framed) version of the quiver involves first doubling the arrows to

H = ΩtΩ where Ω ∼−→Ω, ω 7→ ω, is the reversal of orientation. For an arrow h ∈ H we denote
by h′ ∈ I its initial vertex and by h′′ ∈ I its terminal vertex.

The data for framed quiver varieties are two I-graded vector spaces V = ⊕i∈IVi and D =
⊕i∈IDi. Their dimension vectors v, d ∈ NI define a vector space

M(v, d) =
⊕
h∈H

Hom(Vh′ , Vh′′)⊕
⊕
i∈I

Hom(Di, Vi)⊕
⊕
i∈I

Hom(Vi, Di).

We will consider an element in M(v, d) as a quadruple (x, x, p, q) with

x = (xh)h∈Ω ∈
⊕
h∈Ω

Hom(Vh′ , Vh′′), x = (xh)h∈Ω ∈
⊕
h∈Ω

Hom(Vh′ , Vh′′),

p = (pi)i∈I ∈
⊕
i∈I

Hom(Di, Vi), q = (qi)i∈I ∈
⊕
i∈I

Hom(Vi, Di).
(1.1)

The group G(V ) :=
∏
i∈I GL(Vi) acts naturally on M(v, d). This action is Hamiltonian. The

corresponding moment map

µ : M(v, d)→ g(V )
def
= Lie[G(V )] ∼= ⊕gl(Vi),

is given by

(x, x, p, q) 7→ [x, x] + pq.

The affine invariant theory quotient of µ−1(0) by G(V ) is denoted

M(v, d) := µ−1(0)//G(V ) = Spec(C[µ−1(0)]G(V )).
1
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This is an affine Nakajima quiver variety corresponding to (I,Ω, v, d). This is a Poisson singular
(in general) affine variety.

One can consider the character det : G(V ) → C× and construct the corresponding GIT-
quotient

M(v, d) := µ−1(0)//detG(V ) = µ−1(0)st/G(V ),

where µ−1(0)st ⊂ µ−1(0) is the subset of det-stable points that can be described as follows.
A quadruple (x, x, p, q) is det-stable iff for any I-graded subspace V ′ ⊂ V such that

x(V ′) ⊂ V ′, x(V ) ⊂ V ′, im p ⊂ V
we have V ′ = V .

Variety M(v, d) is a symplectic resolution of singularities (in particularly it is smooth and
symplectic).

Example 1.2. For a quiver AN−1 and v = (N −1, N −2, . . . , 1), d = (N, 0, 0 . . . , 0) symplectic
variety M(v, d) is nothing else but T ∗FN :

M(v, d) ∼−→T ∗FN , (x, x, p, q) 7→ (q1p1, {0} ⊂ ker p ⊂ kerx1p1 ⊂ . . . ⊂ kerxn−1 . . . x1p1),

here xi : Vi → Vi+1, p1 : D1 → V1, q1 : V1 → D1. The variety M0(v, d) is isomorphic to N ⊂
glN :

M(v, d) ∼−→N, (x, x, p, q) 7→ q1p1.

Note that in general we have the natural projective morphism

p : M(v, d)→M0(v, d).

This morphism is an isomorphism over some open subvariety Mreg
0 (v, d) ⊂M0(v, d) that can

be described as follows.
We say that a quadruple (x, x, p, q) is costable (stable for det−1) if for any I-graded subspace

V ′ ⊂ V such that
x(V ′) ⊂ V ′, x(V ′) ⊂ V ′, V ′ ⊂ ker q

we have V ′ = 0. The open subvariety Mreg
0 (v, d) ⊂ M0(v, d) by the definition consists of

quadruples that are both stable and costable.

Proposition 1.3. Morphism p induces an isomorphism p−1(Mreg
0 (v, d)) ∼−→Mreg

0 (v, d).

Remark 1.4. Note that the variety Mreg
0 (v, d) may be empty. For a quiver A1, v = v ∈ N, d =

d ∈ N our data is
p : Cd → Cv, q : Cv → Cd, pq = 0.

Then the pair (p, q) is stable iff p is surjective and is costable iff q is injective. Note also that
im q ⊂ ker p. So for regular (stable and costable) point we have

q : Cv ↪→ ker p ↪→ Cd p−→ Cv → 0

but this is possible only if d > 2v.

Nakajima gave a general combinatorial criteria for Mreg(v, d) to be nonempty (generalising
the condition d > v from remark 1.4). Let us formulate this criteria for quivers Q of finite type
(ADE quiver). Let g be the Lie algebra corresponding to Q.

Proposition 1.5. Variety Mreg(v, d) is nonempty iff d − Cv ∈ ZI>0 and Λd − αv is a weight

of an integrable highest weight module V (g)Λd over g with highest weight Λd, here Λd :=∑
i∈I diωi, αv :=

∑
i∈I viαi, ωi, αi are fundamental and simple roots of g and C is the Cartan

matrix of g.
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Remark 1.6. Note that if Λd − αv is dominant then it is automatically a weight of V (g)Λd .

Let us now recall the representation-theoretic application of quiver varieties. Set L(v, d) :=
p−1(0) ⊂M(v, d).

Proposition 1.7. Fix d ∈ ZI>0. Vector space ⊕v∈ZI>0
HBM

top (L(v, d)) has a structure of inte-

grable simple g-module with highest weight Λd. The component HBM
top (L(v, d)) is the weight

space of weight Λd − αv.

1.2. Slodowy varieties. We will not talk about Slodowy varieties later. Let us just mention
that these varieties depend on a pair of a nilpotent element in a Lie algebra g of a reductive
group G and a parabolic subgroup P ⊂ G. For e = 0 the corresponding Slodowy variety is
T ∗(G/P ). In general, this is a closed subvariety in T ∗(G/P ).

Let us also mention that in type A the corresponding simplectic resolution T ∗(G/P ) →
Spec(C[T ∗(G/P )]) coincides with the resolution T ∗(G/P ) → O, where O ⊂ N is a nilpotent
orbit in the nilpotent cone N ⊂ g of g corresponding to P .

In the simplest case P = B i.e. when P is a Borel subgroup our Slodowy variety is nothing
else but T ∗(G/B) which resolves nilpotent cone N.

Recall that by Example 1.2 in type A we have an isomorphism of symplectic resolutions
T ∗(FN ) ' M(v, d), where v = (N − 1, . . . , 1), d = (N, 0, . . . , 0) and Fn is the flag variety for
GLN .

More generally in type A we have isomorphisms

M(v, d) ∼−→T ∗(F
a
N ), (x, x, p, q) 7→ (q1p1, {0} ⊂ ker p ⊂ kerx1p1 ⊂ . . . ⊂ kerxn−1 . . . x1p1),

where a = (a1, . . . , an) ∈ Zn>0, a1 + . . .+ an = N , F
a
N is the variety of partial flags {0} = F0 ⊂

F1 ⊂ . . . ⊂ Fn−1 ⊂ Fn = D of subspaces of D such that dimFi − dimFi−1 = ai. We have
d = (N, 0, . . . , 0) and v = (N − a1, N − a1 − a2, . . . , N − a1 − . . .− an−1).

These are simple cases of Maffei’s isomorphisms between Slodowy varieties of type A and
quiver varieties of type A. See [Maf].

1.3. Affine Grassmannian and transversal slices.

1.3.1. Affine Grassmannian. Let GrG be the moduli space of G-bundles P over P1 with a
trivialization σ outside 0.

The space GrG can be defined as follows: set K := C((z)), O := C[[z]], then GrG is the
quotient G(K)/G(O). Any cocharacter µ ∈ Λ gives rise to an element of GrG to be denoted
by zµ. The group G(O) acts on GrG via left multiplication. For µ ∈ Λ+, denote by GrµG the
G(O)-orbit of zµ. We have the following decompositions:

GrG =
⊔
λ∈Λ+

GrλG, GrµG =
⊔
λ6λ

GrµG . (1.2)

It is known that for any µ ∈ Λ+ Grµ is a projective algebraic variety of dimension 〈2ρ∨, µ〉, here
2ρ∨ is the sum of positive roots. It follows that GrG = lim

−→
Grµ is an ind-projective scheme.

We have an action C× y GrG via loop rotation:

t · g := (z 7→ g(tz)).

The fixed points of C× y GrG are
⊔
µ∈Λ+ Gzµ.

It is easy to see that

GrµG = {x ∈ GrG | limt→0 t · x ∈ Gzµ}
so in other words GrµG is attractor to Gzµ w.r.t. the loop rotation.
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1.3.2. Transversal slices. Variety GrG has another decomposition (“opposite” to (1.2)) corre-
sponding to G[z−1]-orbits.

For any λ ∈ Λ set GrG,λ := G[z−1]zλ. Then it follows from the Grothendieck theorem about
classification of G-bundles on P1 that we have

GrG =
⊔
λ∈Λ+

GrG,λ .

Directly by the definitions

GrG,λ = {x ∈ GrG | limt→∞ t · x ∈ Gzλ}.

Note that GrG,λ ∩GrλG = Gzλ.
Let us denote by G[z−1]1 ⊂ G[z−1] the kernel of the natural evaluation at infinity homomor-

phism G[z−1]→ G.
We set Wλ := G[z−1]1z

λ. By the definitions

Wλ = {x ∈ GrG | limt→∞ t · x = zλ}, Wλ ∩GrλG = {zλ}.

We can now finally define transversal slices as follows. For λ 6 µ (otherwise W
µ

λ will be
empty) we set

W
µ
λ := GrµG ∩Wλ, W

µ

λ := GrµG ∩Wλ

It follows from the definitions that

W
µ

λ = {x ∈ GrG | limt→∞ t · x = zλ, limt→0 t · x ∈ GrµG}.

Variety W
µ

λ is an affine variety of dimension 〈2ρ∨, µ−λ〉 equipped with a contracting action

of C×, Wµ
λ ⊂W

µ

λ is an open smooth subvariety.

Remark 1.8. Variety W
µ

λ is a transversal slice to GrλG inside GrµG at the point zµ in the following

sence: there exists an open subset U ⊂ GrλG and an open embedding U ×W
µ

λ ↪→ GrµG such that
the following diagram is commutative:

U × {zλ} //

��

GrλG×{zλ}

��
U ×W

µ

λ
// GrλG.

Using this, one can identify stalks of IC-sheaves of GrµG and W
µ

λ at the point zλ.

Remark 1.9. Variety W
µ

λ can be equipped with a Poisson structure comming from a Poisson
structure on GrG.

Remark 1.10. Let us now relate GrG with representation theory. Let G∨ be the Langlands dual
group to G. We denote by PervG(O)(GrG) the category of G(O)-equivariant perverse sheaves
on GrG. There is an equivalence of tensor categories PervG(O)(GrG) ' Repfd(G

∨) with fiber
functor for PervG(O)(GrG) given by P 7→ H∗(GrG,P). Tensor product on PervG(O)(GrG) is
defined using so-called convolution diagram.
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2. Main theorem

For now on our quiver variety is always of type A (Q = An−1). We identify vertices with
integers 1, 2, . . . , n− 1. Our quadruple (x, x, p, q) ∈M(v, d) consists of

xi : Vi → Vi+1, xi : Vi+1 → Vi,

pi : Di → Vi, qi : Vi → Di.

We have an affine quiver variety M0(v, d), we also set D := ⊕Di, V = ⊕iVi and pick a
maximal torus T ⊂ GL(V ).

Let λ be a dominant cocharacter of T that acts with eigenvalue ti on Di. Let µ be a
cocharacter of T that acts with eigenvalue ti on the subspace of D of dimension vi+1 + vi−1 +
di − 2vi. In particular we assume that vi+1 + vi−1 + di − 2vi > 0 for any i. One can see that
this is nothing else but the condition from Proposition 1.5 implying that Mreg

0 (v, d) 6= ∅.

Remark 2.1. Recall that in Section 1.1 we associated to v, d the following characters of T :
Λd =

∑
i diωi, Λd − λv = Λd −

∑
i viαi. Let εi be the standard basis of Lie t. Then

Λd =
∑
i

xiεi, Λd − λv =
∑
i

aiεi,

where

xi = di + di+1 + . . .+ dn−1, ai = xi + vi−1 − vi.
We see that ai − ai+1 = vi+1 + vi−1 + di − 2vi so our condition vi+1 + vi−1 + di − 2vi > 0 say
precisely that Λd −

∑
i viαi is dominant. It now follows from the definitions that

Λd = λt, Λd − λv = µt

considered as Young diagrams.

Theorem 2.2. We have an isomorphism

Φ: M0(v, d) ∼−→W
−w0(µ)

−w0(λ)

given by

(x, x, p, q) 7→ z−w0(λ)(1 + z−1
∞∑

n,l=0

z−nqxnxlp) = z−w0(λ)(1 + q(x− z)−1(x− 1)−1p).

Remark 2.3. We also have an isomorphism

M0(v, d) ∼−→W
µ

λ

given by

(x, x, p, q) 7→ zλ(Id +z−1
∑
n,l

(−z)−nqxnxlp) = zλ(1 + q(x+ z)−1(x− 1)−1p).

The existence of two isomorphisms corresponds to the isomorphism M(v, d) ∼−→M(v†, d†)

(x, x, p, q) 7→ (x,−x, p, q), v†i = v−i, d
†
i = d−i.

Example 2.4. Let us consider the simplest case: v = (N − 1, N − 2, . . . , 1), d = (N, 0, . . . , 0).
Then M0(v, d) ' N. We also have µ = (N, 0, 0, . . . , 0), λ = (1, 1, . . . , 1) so −w0(µ) =
(0, 0, . . . ,−N), −w0(λ) = (−1, . . . ,−1). Note that the element z−w0(λ) is central so multi-

plication by zw0(λ) = zλ identifies W
−w0(µ)

−w0(λ) with W
−w0(µ−λ)

0 .
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The corresponding embedding M0(v, d) ↪→ GrG is given by

(x, x, p, q) 7→ 1 + z−1
∑
l>0

z−lq1x
lxlp1.

It is easy to see (by induction on l using that µ(x, x, p, q) = 0) that

q1x
lxlp1 = q1xxx

l−1xl−1p1 = q1p1q1x
l−1xl−1p1 = . . . = (q1p1)l.

So we obtain the following embedding

N ↪→ GrG, x 7→ 1 + z−1x+ z−2x2 + . . .

Note that we have another embedding N ↪→ GrG given by

x 7→ 1 + z−1x.

It exactly corresponds to our second isomorphism (see remark 2.3).
Let us mention that Mircović and Vybornov have constructed isomorphism

M(v, d) ∼−→ W̃
−w0(µ)
−w0(λ)

of the corresponding symplectic resolutions. Here W̃
−w0(µ)
−w0(λ) is a symplectic resolution of W

−w0(µ)

−w0(λ)

that can be constructed using convolution diagram for Grassmannians.

Remark 2.5. More detailed there exists a semi-small resolution π : G̃r
−w0µ

G → Gr
−w0µ

G which is

used to define tensor structure (convolution) on PervG(O)(GrG). Then W̃
−w0(µ)
−w0(λ) = π−1(W

−w0µ

−w0λ).

3. Idea of the proof

So our goal is to construct an isomorphism

Φ: M0(v, d) ∼−→W
−w0µ

−w0λ.

Let us for simplicitly describe it on the open parts:

Φ: Mreg
0 (v, d) ∼−→W

−w0µ
−w0λ

.

Recall that W
−w0µ
−w0λ

is a moduli space of bundles together with a trivialization on P1 such

that the limit of a loop rotation action when t→∞ is z−w0λ and the limit when t→ 0 lies in
Gr−w0µ

G .

Note that these conditions can be said as follows: every point x ∈W
−w0µ
−w0λ

defines us a unique

morphism u : P1 → GrG such that u is C×-equivariant, u(1) = x, u(∞) = z−w0λ, u(0) ∈ Gr−w0µ
G

and any such morphism defines us a point of W−w0µ
−w0λ

.

Note now that one can think about morphisms u : P1 → GrG as about vector bundles on
P1 × P1 with trivializations on P1 × (P1 \ 0).

So we see that W−w0µ
−w0λ

are certain (equivariant) vector bundles on P1×P1 with trivialization.

It would be nice to find a simmilar description of Mreg(v, d).
To do so let us recall the Gieseker variety and ADHM description of it.
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3.1. Gieseker variety and ADHM. Let BunvGLd(A2) denote the moduli space of principal

GLv-bundles on P1 × P1 of second Chern class v with a trivialization at P1 ×∞∪∞× P1.
Let V be a vector space of dimension v and D be a vector space of dimension d. We set

Mreg
0 (V,D) = {(x, x̄, p, q) ∈ µ−1(0) | stable and costable }/GLv, where (x, x̄, p, q) are Jordan

quiver quadruples:
x, x : V → V, p : D → V, q : V → D.

The ADHM isomorphism identifies BunvGLd(A2) with Mreg
0 (V,D).

The vector bundle E(x,x̄,p,q) corresponding to a quadruple (x, x̄, p, q) can be obtained as the
middle cohomology of the following monad:

V ⊗ OP1×P1(0,−1)

⊕

V ⊗ OP1×P1(−1,−1)
a // V ⊗ OP1×P1(−1, 0)

b // V ⊗ OP1×P1

⊕

D ⊗ OP1×P1

where
a = (kx− y, hx− z, khq), b = (−(hx− z), kx− y, p),

([y : k], [z : h]) are coordinates on P1 × P1 and (∞,∞) = ([1 : 0], [1 : 0]).

3.2. Variety Mreg(v, d) as fixed points of Mreg(V,D). As we see from the ADHM descrip-
tion to relate Mreg(v, d) with vector bundles on P1 × P1 it remains to understand the relation
between the varieties Mreg(v, d) and Mreg(V,D).

Let T ⊂ GL(D) be a maximal torus. Note that we have a symplectic action T y Mreg(V,D)
given by

(x, x, p, q) 7→ (x, x, p ◦ u−1, u ◦ q), u ∈ T.
We also have an action C× y Mreg(V,D) given by

(x, x, p, q) 7→ (t−1x, tx, p, q), t ∈ C×.
These actions commute so we obtain an action

C× × T y Mreg(V,D).

Recall now that we have a co-character −w0λ : C× → T . Consider a cocharacter

ρλ : C× → C× × T, t 7→ (t,−w0λ(t)).

Proposition 3.1. We have an isomorphism

Θ:
⊔

v,
∑
i vi=v

Mreg
0 (v, d) ∼−→ (Mreg

0 (V,D))ρλ(C×)

given by
Θ(xi, xi, pi, qi) 7→ (⊕ixi,⊕ixi,⊕ipi,⊕iqi).
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Proof. We describe the inverse map. Let (x, x̄, p, q) be a fixed point under the C∗-action on
Mreg

0 (V,D) corresponding to −w0(λ). Then for every t ∈ C∗ there exists ρV (t) ∈ GL(V ) such
that

(t−1x, tx̄, p(−w0(λ)(t))−1,−w0(λ)(t)q) = (ρV (t)xρV (t)−1, ρV (t)x̄ρV (t)−1, ρV (t)p, qρV (t)−1).
(3.1)

Note that ρV (t) is uniquely determined by t because of the freeness of GL(V )-action on stable
and costable quadruples. In particular ρV defines a cocharacter of GL(V ). We decompose V
into a direct sum ⊕Vi (where Vi is the t−i-eigenspace of ρV ) and similarly decompose D into a
direct sum ⊕Di with respect to −w0(λ). It is easy to see that the condition (3.1) implies that
∀i ⊂ Z, x(Vi) ⊂ Vi+1, x̄(Vi) ⊂ Vi−1, p(Di) ⊂ Vi, q(Vi) ⊂ Di. So (x, x̄, p, q) defines a point in

a quiver variety of type A with vertices numbered by integers such that
+∞∑
i=−∞

vi = v, and the

framing is d. The inverse map is constructed.
�

4. More technical details

So the construction of the morphism Φ: Mreg(v, d) → W
−w0(µ)
−w0(λ) goes as follows. We start

from a quadruple (xi, xi, pi, qi) ∈Mreg(v, d) and associate to it (via ADHM) a C×-equivariant
vector bundle E = E(x,x,p,q) together with a trivialization at the cross P1 ×∞∪∞× P1. Then

C×-equivariance of E allows us to uniquely extend the trivialization of E on P1 × ∞ to the
trivialization of E on P1× (P1 \ {0}), hence, E|1×P1 defines a point of the Affine Grassmannian
GrG to be denoted η(E). Now

Φ((xi, xi, pi, qi)) := z−w0λE|1×P1 .

We see that if we want to compute Φ explicitly the only thing that we have to do is to
understand how one can construct this extension of our trivialization of E on P1 ×∞ to the
trivialization of E on P1 × (P1 \ {0}) explicitly.

Monad description helps here: recall that E is the middle cohomology of the following monad:

V ⊗ OP1×P1(0,−1)

⊕

V ⊗ OP1×P1(−1,−1)
a // V ⊗ OP1×P1(−1, 0)

b // V ⊗ OP1×P1

⊕

D ⊗ OP1×P1
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where
a = (kx− y, hx− z, khq), b = (−(hx− z), kx− y, p),

([y : k], [z : h]) are coordinates on P1 × P1 and (∞,∞) = ([1 : 0], [1 : 0]).
We want to describe the trivialization of E restricted to P1 × (P1 \ 0). For this it suffices to

construct a map D ⊗ OP1×(P1\0) → Ker(b) |P1×(P1\0) transversal to Im(a) |P1×(P1\0). It is easy
to see that the map:

D ⊗ OP1×(P1\0)
τ1−→ V ⊗ OP1×(P1\0)(0,−1)⊕ V ⊗ OP1×(P1\0)(−1,−1)⊕D ⊗ OP1×(P1\0),

τ1 = ((hx− z)−1p, 0, Id)

satisfies the requirement.
Note that τ1 is well defined because hx̄ is nilpotent (x̄ = ⊕x̄i, and x̄i sends Vi to Vi−1, so

that ⊕x̄i acts nilpotently on ⊕Vi), hence hx̄ − z is invertible when restricted to P1 × (P1 \ 0)
(since z 6= 0 on P1 × (P1 \ 0) and hx̄ is nilpotent). We should mention that transvesality of τ1
to the image of a follows from the fact that hx− z invertible, hence, nonzero for z 6= 0.

For the same reasons the map:

D ⊗ O(P1\0)×P1
τ2−→ V ⊗ O(P1\0)×P1(0,−1)⊕ V ⊗ O(P1\0)×P1(−1,−1)⊕D ⊗ O(P1\0)×P1 ,

τ2 = (0, (y − kx)−1p, Id)

induces the trivialization of E(x,x̄,p,q) restricted to (P1 \ 0) × P1. Note that these two trivi-
alizations agree at the point (∞,∞) and extend the trivialization of E restricted to two in-
finite lines. Now we can construct η(E). We just have to calculate the transition function
(τ−1

1 ◦ τ2)|1×(P1\{0,∞}) it is the point in GrGLd corresponding to E|1×(P1\{0,∞}) and the trivial-
ization induced by τ1. It is easy to see that the corresponding point is

η(E) = 1 + q(x̄− z)−1(x− 1)−1p.

This finishes the proof.
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