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The main references are [MV], [BF1] and also [Hen].

1. EXAMPLES OF SYMPLECTIC RESOLUTIONS

There are three families of symplectic resolutions: Nakajima quiver varieties, Slodowy vari-
eties and transversal slices in affine Grassmannians. In this talk, we will concentrate on two of
these families — quiver varieties and slices in affine Grassmannian. The main result of this talk
is isomorphisms between these families in type A. These isomorphisms can be thought of as a
geometric incarnation of a Howe duality.

Remark 1.1. Tt follows from the results of Maffei ([Maf]) that in type A Slodowy varieties are
isomorphic to quiver varieties of type A so these three families of symplectic resolutions coincide
in type A.

1.1. Nakajima quiver varieties. We start with a quiver Q = (I,Q) with vertices I and
arrows (2.

Passing to the Nakajima (framed) version of the quiver involves first doubling the arrows to
H = QUQ where Q =5 Q, w +— @, is the reversal of orientation. For an arrow h € H we denote
by k' € I its initial vertex and by h” € I its terminal vertex.

The data for framed quiver varieties are two I-graded vector spaces V = @;c;V; and D =
®icrD;. Their dimension vectors v, d € N’ define a vector space

M(v,d) = @D Hom(Vi, Vi) & @) Hom(D;, Vi) & €D Hom(V;, D;).

heH el el

We will consider an element in M(v,d) as a quadruple (x,Z, p, q) with

x = (Tp)heq € EB Hom(Vy, Virr), T = (2n)peq € @ Hom (V3 , Vi),

heQ heQ (1 1)
p = (pi)ier € @Hom(Di,Vi)7 q=(gi)ier € EBHOIH(Vi,Di)-
iel iel

The group G(V) := [[;c; GL(V;) acts naturally on M (v, d). This action is Hamiltonian. The
corresponding moment map

s M(v,d) = g(V) < Lie]G(V)] = agl(V;),

is given by
(z,7,p,q) = 2, 7] + pq.
The affine invariant theory quotient of x~1(0) by G(V) is denoted

M(v,d) = p~'(0)/G(V) = Spec(Clu"(0)]9™).
1
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This is an affine Nakajima quiver variety corresponding to (I, 2, v, d). This is a Poisson singular
(in general) affine variety.

One can consider the character det: G(V) — C* and construct the corresponding GIT-
quotient

Mv, d) = p(0)Jaee G(V) = = (0)** /G(V),

where p71(0)" C p~1(0) is the subset of det-stable points that can be described as follows.

A quadruple (z,T,p, q) is det-stable iff for any I-graded subspace V' C V such that

z(V)ycV'i,z(V)Cc V', impCcV

we have V' = V.

Variety M (v, d) is a symplectic resolution of singularities (in particularly it is smooth and
symplectic).
Example 1.2. For a quiver Ay—1 andv=(N—-1,N—2,...,1), d=(N,0,0...,0) symplectic
variety M(v, d) is nothing else but T*Fy :

M(v,d) = T*Fn, (,Z,p,q) — (q1p1,{0} Ckerp C kerxy1p; C ... Ckerx,_1...21p1),
here x;: V; = Vg1, p1: D1 — Vi, q1: Vi = Dy. The variety Mo(v,d) is isomorphic to N C

aly:
m(y7d> L>N7 (3775717’ q) = q1p1-

Note that in general we have the natural projective morphism
p: m(ﬂ; d) — mo(ya d)

This morphism is an isomorphism over some open subvariety M, (v, d) C My (v, d) that can
be described as follows.

We say that a quadruple (z,Z, p, q) is costable (stable for detfl) if for any I-graded subspace
V' C V such that

x(VYycV,z(V)c V', V' Ckerq

we have V/ = 0. The open subvariety 9, (v,d) C Mo(v,d) by the definition consists of
quadruples that are both stable and costable.

Proposition 1.3. Morphism p induces an isomorphism p~* (9 (v, d)) == My (v, d).

Remark 1.4. Note that the variety MM (v, d) may be empty. For a quiver Ay, v=v €N, d =
d € N our data is

p: C* = CY, q: C* - C%, pg=0.
Then the pair (p,q) is stable iff p is surjective and is costable iff q is injective. Note also that
imgq C kerp. So for regular (stable and costable) point we have

¢:C" skerp > CHE CY 50
but this is possible only if d > 2v.

Nakajima gave a general combinatorial criteria for 91"¢9(v, d) to be nonempty (generalising
the condition d > v from remark 1.4). Let us formulate this criteria for quivers @ of finite type
(ADE quiver). Let g be the Lie algebra corresponding to Q.

Proposition 1.5. Variety 9"°9(v,d) is nonempty iff d — Cv € Zéo and Ag — oy Is a weight
of an integrable highest weight module V(g)*¢ over g with highest weight A4, here Ay :=

Y ier diwiy Q1= ) i1 Vi, wi, o are fundamental and simple roots of g and C' is the Cartan
matrix of g.



Remark 1.6. Note that if Ag — o, is dominant then it is automatically a weight of V(g)’e.

Let us now recall the representation-theoretic application of quiver varieties. Set £(v,d) :=
p1(0) C M(v,d).

Proposition 1.7. Fix d € ZL,. Vector space ®,¢z1 HEM(L(v,d)) has a structure of inte-
= JCA >0
grable simple g-module with highest weight Ay. The component HEM (L (v,d)) is the weight

top
space of weight Ag — a,.

1.2. Slodowy varieties. We will not talk about Slodowy varieties later. Let us just mention
that these varieties depend on a pair of a nilpotent element in a Lie algebra g of a reductive
group G and a parabolic subgroup P C G. For e = 0 the corresponding Slodowy variety is
T*(G/P). In general, this is a closed subvariety in T*(G/P).

Let us also mention that in type A the corresponding simplectic resolution T*(G/P) —
Spec(C[T*(G/P))) coincides with the resolution T*(G/P) — O, where O C N is a nilpotent
orbit in the nilpotent cone N C g of g corresponding to P.

In the simplest case P = B i.e. when P is a Borel subgroup our Slodowy variety is nothing
else but T*(G/B) which resolves nilpotent cone N.

Recall that by Example 1.2 in type A we have an isomorphism of symplectic resolutions
T (Fn) = M(v,d), where v = (N —1,...,1),d = (N,0,...,0) and F,, is the flag variety for
GLy.

More generally in type A we have isomorphisms

M(v,d) = T*(FY), (z,Z,p,q) — (q1p1,{0} C kerp C kerayp; C ... C kerzy_1...21p1),

where a = (a1,...,an) € Z%, a1+ ...+ a, = N, F%, is the variety of partial flags {0} = Fyy C
FCc...C F,1 CF, =D of subspaces of D such that dim F; — dim F;_; = a;. We have
d=(N,0,...,0)and v=(N —a1,N —a1 —az,...,N —a1 — ... — ap_1).

These are simple cases of Maffei’s isomorphisms between Slodowy varieties of type A and
quiver varieties of type A. See [Maf].

1.3. Affine Grassmannian and transversal slices.

1.3.1. Affine Grassmannian. Let Grg be the moduli space of G-bundles P over P! with a
trivialization o outside 0.

The space Grg can be defined as follows: set X := C((2)), O := C][z]], then Grg is the
quotient G(X)/G(0). Any cocharacter u € A gives rise to an element of Grg to be denoted
by z#. The group G(0) acts on Grg via left multiplication. For € A1, denote by Grf, the
G(0)-orbit of z#. We have the following decompositions:

Grg = |_| Gry, Grl, = |_| Gr, . (1.2)
AeA+ A<A

It is known that for any € A+ Gr# is a projective algebraic variety of dimension (2p", i), here
2p" is the sum of positive roots. It follows that Grg = lim Gr# is an ind-projective scheme.
—
We have an action C* ~ Grg via loop rotation:
t-g:=(zm g(tz)).
The fixed points of C* ~ Grg are |_|;LeA+ Gzt
It is easy to see that
Gry, = {z € Grg | im0t -z € G2*}

so in other words Gr, is attractor to Gz* w.r.t. the loop rotation.
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1.3.2. Transversal slices. Variety Grg has another decomposition (“opposite” to (1.2)) corre-
sponding to G[z~1]-orbits.

For any A € A set Grg,y := G[27!]2*. Then it follows from the Grothendieck theorem about
classification of G-bundles on P! that we have

GI“G: |_| GrG,)\.

AEAT

Directly by the definitions
Grga={z € Grg | limy, o t-x € Gz)‘}.

Note that Grg N Gr)c‘; = Gz .

Let us denote by G[z71]; C G[27!] the kernel of the natural evaluation at infinity homomor-
phism G[z71] — G.

We set W) := G[271]12*. By the definitions

Wy = {z € Grg | limy o0t -z = 22}, Wy N Crgy = {27}.

We can now finally define transversal slices as follows. For A < p (otherwise Wi will be
empty) we set
WA = G, "Wy, Wﬁ = Gri, N W,
It follows from the definitions that

Wi ={z € Grg | im0t -z = 2, limyyot -z € @‘é}

Variety Wi _is an affine variety of dimension (2pY, — A) equipped with a contracting action
of C*, WY C Wl; is an open smooth subvariety.

Remark 1.8. Variety W’; is a transversal slice to Grg inside @‘é at the point z* in the following

sence: there exists an open subset U C Grg and an open embedding U X W’; — @’é such that
the following diagram is commutative:

U x {22} —— Gr} x{z*}

| |

U x Wi e @g‘;
Using this, one can identify stalks of IC-sheaves of Grly, and Wi at the point 2.

Remark 1.9. Variety Wi can be equipped with a Poisson structure comming from a Poisson
structure on Grg.

Remark 1.10. Let us now relate Grg with representation theory. Let GV be the Langlands dual
group to G. We denote by Pervgo)(Gra) the category of G(O)-equivariant perverse sheaves
on Grg. There is an equivalence of tensor categories Pervg o) (Gra) =~ Repfd(GV) with fiber
functor for Pervgo)(Grg) given by P — H*(Grg,P). Tensor product on Pervgo)(Grg) is
defined using so-called convolution diagram.



2. MAIN THEOREM

For now on our quiver variety is always of type A (Q = A, —1). We identify vertices with
integers 1,2,...,n — 1. Our quadruple (z,Z,p, q) € M(v,d) consists of
xi: Vi = Vigr, it Vigr = Vi,
pi: Di = Vi, qi: Vi = D;.

We have an affine quiver variety My (v,d), we also set D := ®&D;, V = &;V; and pick a
maximal torus ' C GL(V).

Let A be a dominant cocharacter of T that acts with eigenvalue ¢ on D;. Let u be a
cocharacter of T' that acts with eigenvalue ¢’ on the subspace of D of dimension v; 1 + v;_ +
d; — 2v;. In particular we assume that v; 11 + v;—1 + d; — 2v; > 0 for any i. One can see that
this is nothing else but the condition from Proposition 1.5 implying that 9 (v, d) # @.

Remark 2.1. Recall that in Section 1.1 we associated to v,d the following characters of T

Ag =), diwi, Ag— Ay = Ag — Y, v Let ¢; be the standard basis of Liet. Then
Ai = Zmieia Ai_ )\2 = Zaiei,

where
i =di+diy1+ ... +dn1, a5 =T + Vi1 — ;.

We see that a; — a;11 = vi41 + vi—1 + d; — 2v; so our condition v;41 + v;—1 + d; — 2v; > 0 say
precisely that Ag — >, v;; is dominant. It now follows from the definitions that

Ag=N A=Ay =1t
considered as Young diagrams.

Theorem 2.2. We have an isomorphism

O: NMy(v,d) = W—wo(u)

—’LU()(A)
given by
(@,%,p,q) > 2 V(14271 Y 2 gEtalp) = 2NV (14 g(T - 2) (e - 1) ).
n,l=0

Remark 2.3. We also have an isomorphism
Mo(v, d) > Wy
given by
(z,%,p,q) — 2 (Id +271 Z(—z)‘"qx”flp) =22 1+q(z+2)"Y T -1)"1p).

n,l

The existence of two isomorphisms corresponds to the isomorphism ‘)ﬁ(g,gl)%im(yﬂdf)
('ra§7p7 q) = (fv _'rap7Q)7 U,j = V4, dI = d—i'

Example 2.4. Let us consider the simplest case: v= (N —1,N —2,...,1), d=(N,0,...,0).
Then My(v,d) ~ N. We also have p = (N,0,0,...,0), A = (1,1,...,1) so —wpo(p) =
(0,0,...,—N), —wo(A\) = (=1,...,—1). Note that the element z=*°N s central so multi-

plication by =0 = 2 identifies Wi (3) with Wy """ ™.
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The corresponding embedding My (v, d) — Grg is given by

(Z,f,p, q) =1 + 271 Z Zilqlflxlpb
>0

It is easy to see (by induction on | using that u(x,T,p,q) = 0) that

aT'a'p = T 2 T = pign T T == ()

So we obtain the following embedding
N Grg,z— 14+z2z7 1o+ 27222 + ...
Note that we have another embedding N — Grg given by
142t

It exactly corresponds to our second isomorphism (see remark 2.3).
Let us mention that Mircovi¢ and Vybornov have constructed isomorphism

wo (k)
M(v,d) —>W_w o)

of the corresponding symplectic resolutions. Here \7\7:3283 is a symplectic resolution of W Zs(ig
that can be constructed using convolution diagram for Grassmannians.
—wo

Remark 2.5. More detailed there exists a semi-small resolution 7: (TrG g Grg"*"" which is

used to define tensor structure (convolution) on Perveg(o)(Grg). Then \7\7:322‘;5 =71 (W:Iwugl;)

3. IDEA OF THE PROOF

So our goal is to construct an isomorphism

®: Mo(v,d) = W_,°5

’w0>\

Let us for simplicitly describe it on the open parts:
D: M (v, d) —>W7$°§f

Recall that W_ZOK is a moduli space of bundles together with a trivialization on P! such
that the limit of a loop rotation action when t — oo is z~°* and the limit when ¢ — 0 lies in
Trwon.

Note that these conditions can be said as follows: every point 2 € W_°% defines us a unique
morphism u: P! — Grg such that u is C*-equivariant, u(1) = z, u(oo) = z27*°*, u(0) € Grg""
and any such morphism defines us a point of W_%.

Note now that one can think about morphlsms u: P! — Grg as about vector bundles on
P! x P! with trivializations on P! x (P! \ 0).

So we see that W_/°X are certain (equivariant) vector bundles on P* x P! with trivialization.

It would be nice to ﬁnd a simmilar description of 979 (v, d).

To do so let us recall the Gieseker variety and ADHM description of it.
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3.1. Gieseker variety and ADHM. Let Bung;, (A?) denote the moduli space of principal
GL,-bundles on P! x P! of second Chern class v with a trivialization at P! x co U oo x PL.

Let V be a vector space of dimension v and D be a vector space of dimension d. We set
M (V,D) = {(x,%,p,q) € u~'(0) | stable and costable }/GL,, where (z,Z,p,q) are Jordan
quiver quadruples:

z2,z: V>V, p:D—->V q:V —D.

The ADHM isomorphism identifies Bung,  (A?) with Dg“(V, D).

The vector bundle E(, z , ) corresponding to a quadruple (z,7,p,q) can be obtained as the
middle cohomology of the following monad:

V ® O]pl XPI (O, —1)

S

Vv X O]pl X]pl(*l, *1) % Vv X OPI Xpl(*l,o) % 1% X OIFDI xP1

D

D ® Op1yp1
where
a = (kx —y,hT — z,khq), b = (—(hT — 2), kx — y,p),

(ly : k], [z : h]) are coordinates on P! x P! and (0o, 00) = ([1 : 0],[1 : 0]).
3.2. Variety 9" (v, d) as fixed points of M9 (V, D). As we see from the ADHM descrip-
tion to relate 9"¢9 (v, d) with vector bundles on P! x P! it remains to understand the relation
between the varieties M"Y (v, d) and M9 (V, D).

Let T C GL(D) be a maximal torus. Note that we have a symplectic action T~ 9"9(V, D)
given by

(,%,p,q) = (2,T,pou",uoq),ucT.
We also have an action C* ~ IM"9(V, D) given by
(z,7,p,q) — (t o, tT,p,q), t € C*.
These actions commute so we obtain an action
C* x T ~ M9(V, D).
Recall now that we have a co-character —wgA: C* — T. Consider a cocharacter
pr: CC = C* X T, t— (t, —woA(t)).
Proposition 3.1. We have an isomorphism
O [ M d) = (v, D))
v, Vi=V
given by
O (x4, Ti, i, ¢i) > (Dii, ©iT4, Dipis Diqi)-
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Proof. We describe the inverse map. Let (z,Z,p,q) be a fixed point under the C*-action on
MY (V, D) corresponding to —wg(A). Then for every ¢t € C* there exists py (t) € GL(V) such
that

(" a, 2, p(—wo (M) (1)~ —wo (M) (1)) = (pv (D)zpv (1), pv (D) Zpy (8) 71, pv (t)p, qu(t)_(;)i)

Note that py (t) is uniquely determined by ¢ because of the freeness of GL(V')-action on stable
and costable quadruples. In particular py defines a cocharacter of GL(V). We decompose V
into a direct sum ®V; (where V; is the t~‘-eigenspace of py-) and similarly decompose D into a
direct sum &D; with respect to —wg(A). It is easy to see that the condition (3.1) implies that
Vi C Z, x(V;) C Vi1, (V) C Viey, p(D;) C Vi, q(V;) € D;. So (x,%,p,q) defines a point in

“+o0
a quiver variety of type A with vertices numbered by integers such that >, v; = v, and the
i=—00

framing is d. The inverse map is constructed.
O

4. MORE TECHNICAL DETAILS

So the construction of the morphism ®: 979 (v, d) — Wizzgf\b; goes as follows. We start
from a quadruple (z;, T;, p;, ¢;) € M 9(v, d) and associate to it (via ADH M) a C*-equivariant
vector bundle £ = E(; z 5, q) together with a trivialization at the cross P! x oo Uoo x P'. Then
C*-equivariance of E allows us to uniquely extend the trivialization of E on P! x oo to the
trivialization of E on P! x (P! \ {0}), hence, E|;p: defines a point of the Affine Grassmannian

Grg to be denoted n(E). Now

(24, T, pir qi) 1= 2~ " El1xpr.

We see that if we want to compute ® explicitly the only thing that we have to do is to
understand how one can construct this extension of our trivialization of E on P! x co to the
trivialization of E on P* x (P! \ {0}) explicitly.

Monad description helps here: recall that F is the middle cohomology of the following monad:

V @ Opi «p1 (0, —1)

D

V®OP1><P1(—1,—1) = V®OP1><P1(—1,O)

V ® Opi «p1

)

D ® Op1yp1



where
a= (kx - Y hz — Z, khq)a b= (7(}1j - Z)v kz — yap)a
([y : k], [z : h]) are coordinates on P* x P! and (oo, 00) = ([1: 0],[1 : 0]).

We want to describe the trivialization of E restricted to P* x (P! \ 0). For this it suffices to
construct a map D ® Op1yp1yo) — Ker(b) [p1(p1\0) transversal to Im(a) [p1 p1\0). It is easy
to see that the map:

D ® Op1ypry0) = V @ Op1 »#110) (0, =1) & V @ Op1 » p110) (—1, =1) & D & Op1(p1\0),
1 = ((hT — 2)"'p,0,1d)
satisfies the requirement.

Note that 7 is well defined because hZ is nilpotent (z = ®z;, and Z; sends V; to V;_1, so
that @; acts nilpotently on @©V;), hence hz — z is invertible when restricted to P! x (P! 0)
(since z # 0 on P! x (P! \ 0) and hZ is nilpotent). We should mention that transvesality of 7

to the image of a follows from the fact that hZ — z invertible, hence, nonzero for z # 0.
For the same reasons the map:

D ® Opnoyxpr — V @ Opiyoyxer (0, —1) & V @ Opr\g)xpr (—1,—1) & D @ Op1\0)xp1,

75 = (0, (y — kx) " 'p,1d)
induces the trivialization of E(, ; , o) restricted to (P'\ 0) x P'. Note that these two trivi-
alizations agree at the point (0o, 00) and extend the trivialization of E restricted to two in-
finite lines. Now we can construct n(E). We just have to calculate the transition function
(71_1 0 T2)|1x (P1\{0,00}) it I8 the point in Grgr, corresponding to Ejyx (p1\{0,00}) and the trivial-
ization induced by 71. It is easy to see that the corresponding point is

n(E)=1+q(@ 2" (x—1)""p.
This finishes the proof.
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