ON ISOMORPHISMS BETWEEN QUIVER VARIETIES OF TYPE A AND SLICES IN THE AFFINE GRASSMANNIAN

VASILY KRYLOV

The main references are [MV], [BF1] and also [Hen].

1. EXAmples of symplectic resolutions

There are three families of symplectic resolutions: Nakajima quiver varieties, Slodowy varieties and transversal slices in affine Grassmannians. In this talk, we will concentrate on two of these families - quiver varieties and slices in affine Grassmannian. The main result of this talk is isomorphisms between these families in type A. These isomorphisms can be thought of as a geometric incarnation of a Howe duality.

Remark 1.1. It follows from the results of Maffei ([Maf]) that in type A Slodowy varieties are isomorphic to quiver varieties of type A so these three families of symplectic resolutions coincide in type A.
1.1. Nakajima quiver varieties. We start with a quiver $Q=(I, \Omega)$ with vertices I and arrows Ω.

Passing to the Nakajima (framed) version of the quiver involves first doubling the arrows to $H=\Omega \sqcup \bar{\Omega}$ where $\Omega \xrightarrow{\sim} \bar{\Omega}, \omega \mapsto \bar{\omega}$, is the reversal of orientation. For an arrow $h \in H$ we denote by $h^{\prime} \in I$ its initial vertex and by $h^{\prime \prime} \in I$ its terminal vertex.

The data for framed quiver varieties are two I-graded vector spaces $V=\oplus_{i \in I} V_{i}$ and $D=$ $\oplus_{i \in I} D_{i}$. Their dimension vectors $\underline{v}, \underline{d} \in \mathbb{N}^{I}$ define a vector space

$$
M(\underline{v}, \underline{d})=\bigoplus_{h \in H} \operatorname{Hom}\left(V_{h^{\prime}}, V_{h^{\prime \prime}}\right) \oplus \bigoplus_{i \in I} \operatorname{Hom}\left(D_{i}, V_{i}\right) \oplus \bigoplus_{i \in I} \operatorname{Hom}\left(V_{i}, D_{i}\right) .
$$

We will consider an element in $M(\underline{v}, \underline{d})$ as a quadruple (x, \bar{x}, p, q) with

$$
\begin{array}{ll}
x=\left(x_{h}\right)_{h \in \Omega} \in \bigoplus_{h \in \Omega} \operatorname{Hom}\left(V_{h^{\prime}}, V_{h^{\prime \prime}}\right), & \bar{x}=\left(x_{h}\right)_{h \in \bar{\Omega}} \in \bigoplus_{h \in \bar{\Omega}} \operatorname{Hom}\left(V_{h^{\prime}}, V_{h^{\prime \prime}}\right), \tag{1.1}\\
p=\left(p_{i}\right)_{i \in I} \in \bigoplus_{i \in I} \operatorname{Hom}\left(D_{i}, V_{i}\right), & q=\left(q_{i}\right)_{i \in I} \in \bigoplus_{i \in I} \operatorname{Hom}\left(V_{i}, D_{i}\right) .
\end{array}
$$

The group $G(V):=\prod_{i \in I} \mathrm{GL}\left(V_{i}\right)$ acts naturally on $M(\underline{v}, \underline{d})$. This action is Hamiltonian. The corresponding moment map

$$
\mu: M(v, d) \rightarrow \mathfrak{g}(V) \stackrel{\text { def }}{=} \operatorname{Lie}[G(V)] \cong \oplus g l\left(V_{i}\right)
$$

is given by

$$
(x, \bar{x}, p, q) \mapsto[x, \bar{x}]+p q .
$$

The affine invariant theory quotient of $\mu^{-1}(0)$ by $G(V)$ is denoted

$$
\mathfrak{M}(\underline{v}, \underline{d}):=\mu^{-1}(0) / / G(V)=\operatorname{Spec}\left(\mathbb{C}\left[\mu^{-1}(0)\right]^{G(V)}\right)
$$

This is an affine Nakajima quiver variety corresponding to $(I, \Omega, \underline{v}, \underline{d})$. This is a Poisson singular (in general) affine variety.

One can consider the character det: $G(V) \rightarrow \mathbb{C}^{\times}$and construct the corresponding GITquotient

$$
\mathfrak{M}(\underline{v}, \underline{d}):=\mu^{-1}(0) / / \operatorname{det} G(V)=\mu^{-1}(0)^{s t} / G(V),
$$

where $\mu^{-1}(0)^{s t} \subset \mu^{-1}(0)$ is the subset of det-stable points that can be described as follows.
A quadruple (x, \bar{x}, p, q) is det-stable iff for any I-graded subspace $V^{\prime} \subset V$ such that

$$
x\left(V^{\prime}\right) \subset V^{\prime}, x(V) \subset V^{\prime}, \operatorname{im} p \subset V
$$

we have $V^{\prime}=V$.
Variety $\mathfrak{M}(\underline{v}, \underline{d})$ is a symplectic resolution of singularities (in particularly it is smooth and symplectic).
Example 1.2. For a quiver A_{N-1} and $\underline{v}=(N-1, N-2, \ldots, 1), \underline{d}=(N, 0,0 \ldots, 0)$ symplectic variety $\mathfrak{M}(\underline{v}, \underline{d})$ is nothing else but $T^{*} \mathcal{F}_{N}$:

$$
\mathfrak{M}(\underline{v}, \underline{d}) \xrightarrow{\sim} T^{*} \mathcal{F}_{N},(x, \bar{x}, p, q) \mapsto\left(q_{1} p_{1},\{0\} \subset \operatorname{ker} p \subset \operatorname{ker} x_{1} p_{1} \subset \ldots \subset \operatorname{ker} x_{n-1} \ldots x_{1} p_{1}\right)
$$

here $x_{i}: V_{i} \rightarrow V_{i+1}, p_{1}: D_{1} \rightarrow V_{1}, q_{1}: V_{1} \rightarrow D_{1}$. The variety $\mathfrak{M}_{0}(\underline{v}, \underline{d})$ is isomorphic to $\mathcal{N} \subset$ $\mathfrak{g l}_{N}$:

$$
\mathfrak{M}(\underline{v}, \underline{d}) \xrightarrow{\sim} \mathcal{N},(x, \bar{x}, p, q) \mapsto q_{1} p_{1} .
$$

Note that in general we have the natural projective morphism

$$
\mathbf{p}: \mathfrak{M}(\underline{v}, \underline{d}) \rightarrow \mathfrak{M}_{0}(\underline{v}, \underline{d}) .
$$

This morphism is an isomorphism over some open subvariety $\mathfrak{M}_{0}^{r e g}(\underline{v}, \underline{d}) \subset \mathfrak{M}_{0}(\underline{v}, \underline{d})$ that can be described as follows.

We say that a quadruple (x, \bar{x}, p, q) is costable (stable for det^{-1}) if for any I-graded subspace $V^{\prime} \subset V$ such that

$$
x\left(V^{\prime}\right) \subset V^{\prime}, \bar{x}\left(V^{\prime}\right) \subset V^{\prime}, V^{\prime} \subset \operatorname{ker} q
$$

we have $V^{\prime}=0$. The open subvariety $\mathfrak{M}_{0}^{\text {reg }}(\underline{v}, \underline{d}) \subset \mathfrak{M}_{0}(\underline{v}, \underline{d})$ by the definition consists of quadruples that are both stable and costable.

Proposition 1.3. Morphism \mathbf{p} induces an isomorphism $\mathbf{p}^{-1}\left(\mathfrak{M}_{0}^{\text {reg }}(\underline{v}, \underline{d})\right) \xrightarrow{\sim} \mathfrak{M}_{0}^{\text {reg }}(\underline{v}, \underline{d})$.
Remark 1.4. Note that the variety $\mathfrak{M}_{0}^{\text {reg }}(\underline{v}, \underline{d})$ may be empty. For a quiver $A_{1}, \underline{v}=v \in \mathbb{N}, \underline{d}=$ $d \in \mathbb{N}$ our data is

$$
p: \mathbb{C}^{d} \rightarrow \mathbb{C}^{v}, q: \mathbb{C}^{v} \rightarrow \mathbb{C}^{d}, p q=0
$$

Then the pair (p, q) is stable iff p is surjective and is costable iff q is injective. Note also that $\operatorname{im} q \subset \operatorname{ker} p$. So for regular (stable and costable) point we have

$$
q: \mathbb{C}^{v} \hookrightarrow \operatorname{ker} p \hookrightarrow \mathbb{C}^{d} \xrightarrow{p} \mathbb{C}^{v} \rightarrow 0
$$

but this is possible only if $d \geqslant 2 v$.
Nakajima gave a general combinatorial criteria for $\mathfrak{M}^{\text {reg }}(\underline{v}, \underline{d})$ to be nonempty (generalising the condition $d \geqslant v$ from remark 1.4). Let us formulate this criteria for quivers Q of finite type ($A D E$ quiver). Let \mathfrak{g} be the Lie algebra corresponding to Q.
Proposition 1.5. Variety $\mathfrak{M}^{\text {reg }}(\underline{v}, \underline{d})$ is nonempty iff $\underline{d}-C \underline{v} \in \mathbb{Z}_{\geqslant 0}^{I}$ and $\Lambda_{\underline{d}}-\alpha_{\underline{v}}$ is a weight of an integrable highest weight module $V(\mathfrak{g})^{\Lambda_{\underline{d}}}$ over \mathfrak{g} with highest weight $\Lambda_{\underline{d}}$, here $\Lambda_{\underline{d}}:=$ $\sum_{i \in I} d_{i} \omega_{i}, \alpha_{\underline{v}}:=\sum_{i \in I} v_{i} \alpha_{i}, \omega_{i}, \alpha_{i}$ are fundamental and simple roots of \mathfrak{g} and \bar{C} is the Cartan matrix of \mathfrak{g}.

Remark 1.6. Note that if $\Lambda_{\underline{d}}-\alpha_{\underline{v}}$ is dominant then it is automatically a weight of $V(\mathfrak{g})^{\Lambda_{d}}$.
Let us now recall the representation-theoretic application of quiver varieties. Set $\mathcal{L}(\underline{v}, \underline{d}):=$ $\mathbf{p}^{-1}(0) \subset \mathfrak{M}(\underline{v}, \underline{d})$.
Proposition 1.7. Fix $\underline{d} \in \mathbb{Z}_{\geqslant 0}^{I}$. Vector space $\oplus_{\underline{v} \in \mathbb{Z}_{\geqslant 0}^{I}} H_{\text {top }}^{B M}(\mathcal{L}(\underline{v}, \underline{d}))$ has a structure of integrable simple \mathfrak{g}-module with highest weight $\Lambda_{\underline{d}}$. The component $H_{\text {top }}^{B M}(\mathcal{L}(\underline{v}, \underline{d}))$ is the weight space of weight $\Lambda_{\underline{d}}-\alpha_{\underline{v}}$.
1.2. Slodowy varieties. We will not talk about Slodowy varieties later. Let us just mention that these varieties depend on a pair of a nilpotent element in a Lie algebra \mathfrak{g} of a reductive group G and a parabolic subgroup $P \subset G$. For $e=0$ the corresponding Slodowy variety is $T^{*}(G / P)$. In general, this is a closed subvariety in $T^{*}(G / P)$.

Let us also mention that in type A the corresponding simplectic resolution $T^{*}(G / P) \rightarrow$ $\operatorname{Spec}\left(\mathbb{C}\left[T^{*}(G / P)\right]\right)$ coincides with the resolution $T^{*}(G / P) \rightarrow \bar{O}$, where $O \subset \mathcal{N}$ is a nilpotent orbit in the nilpotent cone $\mathcal{N} \subset \mathfrak{g}$ of \mathfrak{g} corresponding to P.

In the simplest case $P=B$ i.e. when P is a Borel subgroup our Slodowy variety is nothing else but $T^{*}(G / B)$ which resolves nilpotent cone \mathcal{N}.

Recall that by Example 1.2 in type A we have an isomorphism of symplectic resolutions $T^{*}\left(\mathcal{F}_{N}\right) \simeq \mathfrak{M}(\underline{v}, \underline{d})$, where $\underline{v}=(N-1, \ldots, 1), \underline{d}=(N, 0, \ldots, 0)$ and \mathcal{F}_{n} is the flag variety for GL_{N}.

More generally in type A we have isomorphisms
$\mathfrak{M}(\underline{v}, \underline{d}) \xrightarrow{\sim} T^{*}\left(\mathcal{F}^{\underline{a}}\right),(x, \bar{x}, p, q) \mapsto\left(q_{1} p_{1},\{0\} \subset \operatorname{ker} p \subset \operatorname{ker} x_{1} p_{1} \subset \ldots \subset \operatorname{ker} x_{n-1} \ldots x_{1} p_{1}\right)$,
where $\underline{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n}, a_{1}+\ldots+a_{n}=N, \mathcal{F}_{N}^{a}$ is the variety of partial flags $\{0\}=F_{0} \subset$ $F_{1} \subset \ldots \subset F_{n-1} \subset F_{n}=D$ of subspaces of D such that $\operatorname{dim} F_{i}-\operatorname{dim} F_{i-1}=a_{i}$. We have $\underline{d}=(N, 0, \ldots, 0)$ and $\underline{v}=\left(N-a_{1}, N-a_{1}-a_{2}, \ldots, N-a_{1}-\ldots-a_{n-1}\right)$.

These are simple cases of Maffei's isomorphisms between Slodowy varieties of type A and quiver varieties of type A. See [Maf].

1.3. Affine Grassmannian and transversal slices.

1.3.1. Affine Grassmannian. Let Gr_{G} be the moduli space of G-bundles \mathcal{P} over \mathbb{P}^{1} with a trivialization σ outside 0 .

The space Gr_{G} can be defined as follows: set $\mathcal{K}:=\mathbb{C}((z)), \mathcal{O}:=\mathbb{C}[[z]]$, then Gr_{G} is the quotient $G(\mathcal{K}) / G(\mathcal{O})$. Any cocharacter $\mu \in \Lambda$ gives rise to an element of Gr_{G} to be denoted by z^{μ}. The group $G(\mathcal{O})$ acts on Gr_{G} via left multiplication. For $\mu \in \Lambda^{+}$, denote by $\operatorname{Gr}_{G}^{\mu}$ the $G(\mathcal{O})$-orbit of z^{μ}. We have the following decompositions:

$$
\begin{equation*}
\operatorname{Gr}_{G}=\bigsqcup_{\lambda \in \Lambda^{+}} \operatorname{Gr}_{G}^{\lambda}, \overline{\operatorname{Gr}}_{G}^{\mu}=\bigsqcup_{\lambda \leqslant \lambda} \operatorname{Gr}_{G}^{\mu} \tag{1.2}
\end{equation*}
$$

It is known that for any $\mu \in \Lambda^{+} \overline{\mathrm{Gr}}^{\mu}$ is a projective algebraic variety of dimension $\left\langle 2 \rho^{\vee}, \mu\right\rangle$, here $2 \rho^{\vee}$ is the sum of positive roots. It follows that $\mathrm{Gr}_{G}=\underset{\longrightarrow}{\lim } \overline{\mathrm{Gr}}^{\mu}$ is an ind-projective scheme.

We have an action $\mathbb{C}^{\times} \curvearrowright \operatorname{Gr}_{G}$ via loop rotation:

$$
t \cdot g:=(z \mapsto g(t z))
$$

The fixed points of $\mathbb{C}^{\times} \curvearrowright \operatorname{Gr}_{G}$ are $\bigsqcup_{\mu \in \Lambda^{+}} G z^{\mu}$.
It is easy to see that

$$
\operatorname{Gr}_{G}^{\mu}=\left\{x \in \operatorname{Gr}_{G} \mid \lim _{t \rightarrow 0} t \cdot x \in G z^{\mu}\right\}
$$

so in other words Gr_{G}^{μ} is attractor to $G z^{\mu}$ w.r.t. the loop rotation.
1.3.2. Transversal slices. Variety Gr_{G} has another decomposition ("opposite" to (1.2)) corresponding to $G\left[z^{-1}\right]$-orbits.

For any $\lambda \in \Lambda$ set $\operatorname{Gr}_{G, \lambda}:=G\left[z^{-1}\right] z^{\lambda}$. Then it follows from the Grothendieck theorem about classification of G-bundles on \mathbb{P}^{1} that we have

$$
\operatorname{Gr}_{G}=\bigsqcup_{\lambda \in \Lambda^{+}} \operatorname{Gr}_{G, \lambda}
$$

Directly by the definitions

$$
\operatorname{Gr}_{G, \lambda}=\left\{x \in \operatorname{Gr}_{G} \mid \lim _{t \rightarrow \infty} t \cdot x \in G z^{\lambda}\right\}
$$

Note that $\operatorname{Gr}_{G, \lambda} \cap \operatorname{Gr}_{G}^{\lambda}=G z^{\lambda}$.
Let us denote by $G\left[z^{-1}\right]_{1} \subset G\left[z^{-1}\right]$ the kernel of the natural evaluation at infinity homomorphism $G\left[z^{-1}\right] \rightarrow G$.

We set $\mathcal{W}_{\lambda}:=G\left[z^{-1}\right]_{1} z^{\lambda}$. By the definitions

$$
\mathcal{W}_{\lambda}=\left\{x \in \operatorname{Gr}_{G} \mid \lim _{t \rightarrow \infty} t \cdot x=z^{\lambda}\right\}, \mathcal{W}_{\lambda} \cap \operatorname{Gr}_{G}^{\lambda}=\left\{z^{\lambda}\right\}
$$

We can now finally define transversal slices as follows. For $\lambda \leqslant \mu$ (otherwise $\overline{\mathcal{W}}_{\lambda}^{\mu}$ will be empty) we set

$$
\mathcal{W}_{\lambda}^{\mu}:=\operatorname{Gr}_{G}^{\mu} \cap \mathcal{W}_{\lambda}, \overline{\mathcal{W}}_{\lambda}^{\mu}:=\overline{\operatorname{Gr}}_{G}^{\mu} \cap \mathcal{W}_{\lambda}
$$

It follows from the definitions that

$$
\overline{\mathcal{W}}_{\lambda}^{\mu}=\left\{x \in \operatorname{Gr}_{G} \mid \lim _{t \rightarrow \infty} t \cdot x=z^{\lambda}, \lim _{t \rightarrow 0} t \cdot x \in \overline{\operatorname{Gr}}_{G}^{\mu}\right\} .
$$

Variety $\overline{\mathcal{W}}_{\lambda}^{\mu}$ is an affine variety of dimension $\left\langle 2 \rho^{\vee}, \mu-\lambda\right\rangle$ equipped with a contracting action of $\mathbb{C}^{\times}, \mathcal{W}_{\lambda}^{\mu} \subset \overline{\mathcal{W}}_{\lambda}^{\mu}$ is an open smooth subvariety.

Remark 1.8. Variety $\overline{\mathcal{W}}_{\lambda}^{\mu}$ is a transversal slice to $\operatorname{Gr}_{G}^{\lambda}$ inside $\overline{\operatorname{Gr}}_{G}^{\mu}$ at the point z^{μ} in the following sence: there exists an open subset $U \subset \operatorname{Gr}_{G}^{\lambda}$ and an open embedding $U \times \overline{\mathcal{W}}_{\lambda}^{\mu} \hookrightarrow \overline{\operatorname{Gr}}_{G}^{\mu}$ such that the following diagram is commutative:

Using this, one can identify stalks of IC-sheaves of $\overline{\operatorname{Gr}}_{G}^{\mu}$ and $\overline{\mathcal{W}}_{\lambda}^{\mu}$ at the point z^{λ}.
Remark 1.9. Variety $\overline{\mathcal{W}}_{\lambda}^{\mu}$ can be equipped with a Poisson structure comming from a Poisson structure on Gr_{G}.

Remark 1.10. Let us now relate Gr_{G} with representation theory. Let G^{\vee} be the Langlands dual group to G. We denote by $\operatorname{Perv}_{G(\mathcal{O})}\left(\mathrm{Gr}_{G}\right)$ the category of $G(\mathcal{O})$-equivariant perverse sheaves on Gr_{G}. There is an equivalence of tensor categories $\operatorname{Perv}_{G(\mathcal{O})}\left(\operatorname{Gr}_{G}\right) \simeq \operatorname{Rep}_{f d}\left(G^{\vee}\right)$ with fiber functor for $\operatorname{Perv}_{G(\mathcal{O})}\left(\mathrm{Gr}_{G}\right)$ given by $\mathcal{P} \mapsto H^{*}\left(\mathrm{Gr}_{G}, \mathcal{P}\right)$. Tensor product on $\operatorname{Perv}_{G(\mathcal{O})}\left(\mathrm{Gr}_{G}\right)$ is defined using so-called convolution diagram.

2. Main theorem

For now on our quiver variety is always of type $A\left(Q=A_{n-1}\right)$. We identify vertices with integers $1,2, \ldots, n-1$. Our quadruple $(x, \bar{x}, p, q) \in M(\underline{v}, \underline{d})$ consists of

$$
\begin{gathered}
x_{i}: V_{i} \rightarrow V_{i+1}, \bar{x}_{i}: V_{i+1} \rightarrow V_{i} \\
p_{i}: D_{i} \rightarrow V_{i}, q_{i}: V_{i} \rightarrow D_{i}
\end{gathered}
$$

We have an affine quiver variety $\mathfrak{M}_{0}(\underline{v}, \underline{d})$, we also set $D:=\oplus D_{i}, V=\oplus_{i} V_{i}$ and pick a maximal torus $T \subset \mathrm{GL}(V)$.

Let λ be a dominant cocharacter of T that acts with eigenvalue t^{i} on D_{i}. Let μ be a cocharacter of T that acts with eigenvalue t^{i} on the subspace of D of dimension $v_{i+1}+v_{i-1}+$ $d_{i}-2 v_{i}$. In particular we assume that $v_{i+1}+v_{i-1}+d_{i}-2 v_{i} \geqslant 0$ for any i. One can see that this is nothing else but the condition from Proposition 1.5 implying that $\mathfrak{M}_{0}^{r e g}(\underline{v}, \underline{d}) \neq \varnothing$.

Remark 2.1. Recall that in Section 1.1 we associated to $\underline{v}, \underline{d}$ the following characters of T : $\Lambda_{\underline{d}}=\sum_{i} d_{i} \omega_{i}, \Lambda_{\underline{d}}-\lambda_{\underline{v}}=\Lambda_{\underline{d}}-\sum_{i} v_{i} \alpha_{i}$. Let ϵ_{i} be the standard basis of Lie \mathfrak{t}. Then

$$
\Lambda_{\underline{d}}=\sum_{i} x_{i} \epsilon_{i}, \Lambda_{\underline{d}}-\lambda_{\underline{v}}=\sum_{i} a_{i} \epsilon_{i}
$$

where

$$
x_{i}=d_{i}+d_{i+1}+\ldots+d_{n-1}, a_{i}=x_{i}+v_{i-1}-v_{i}
$$

We see that $a_{i}-a_{i+1}=v_{i+1}+v_{i-1}+d_{i}-2 v_{i}$ so our condition $v_{i+1}+v_{i-1}+d_{i}-2 v_{i} \geqslant 0$ say precisely that $\Lambda_{\underline{d}}-\sum_{i} v_{i} \alpha_{i}$ is dominant. It now follows from the definitions that

$$
\Lambda_{\underline{d}}=\lambda^{t}, \Lambda_{\underline{d}}-\lambda_{\underline{v}}=\mu^{t}
$$

considered as Young diagrams.
Theorem 2.2. We have an isomorphism

$$
\Phi: \mathfrak{M}_{0}(\underline{v}, \underline{d}) \xrightarrow{\sim} \overline{\mathcal{W}}_{-w_{0}(\lambda)}^{-w_{0}(\mu)}
$$

given by

$$
(x, \bar{x}, p, q) \mapsto z^{-w_{0}(\lambda)}\left(1+z^{-1} \sum_{n, l=0}^{\infty} z^{-n} q \bar{x}^{n} x^{l} p\right)=z^{-w_{0}(\lambda)}\left(1+q(\bar{x}-z)^{-1}(x-1)^{-1} p\right)
$$

Remark 2.3. We also have an isomorphism

$$
\mathfrak{M}_{0}(\underline{v}, \underline{d}) \xrightarrow{\sim} \overline{\mathcal{W}}_{\lambda}^{\mu}
$$

given by

$$
(x, \bar{x}, p, q) \mapsto z^{\lambda}\left(\operatorname{Id}+z^{-1} \sum_{n, l}(-z)^{-n} q x^{n} \bar{x}^{l} p\right)=z^{\lambda}\left(1+q(x+z)^{-1}(\bar{x}-1)^{-1} p\right)
$$

The existence of two isomorphisms corresponds to the isomorphism $\mathfrak{M}(\underline{v}, \underline{d}) \xrightarrow{\sim} \mathfrak{M}\left(\underline{v}^{\dagger}, \underline{d}^{\dagger}\right)$ $(x, \bar{x}, p, q) \mapsto(\bar{x},-x, p, q), v_{i}^{\dagger}=v_{-i}, d_{i}^{\dagger}=d_{-i}$.

Example 2.4. Let us consider the simplest case: $\underline{v}=(N-1, N-2, \ldots, 1), \underline{d}=(N, 0, \ldots, 0)$. Then $\mathfrak{M}_{0}(\underline{v}, \underline{d}) \simeq \mathcal{N}$. We also have $\mu=(N, 0,0, \ldots, 0), \lambda=(1,1, \ldots, 1)$ so $-w_{0}(\mu)=$ $(0,0, \ldots,-N),-w_{0}(\lambda)=(-1, \ldots,-1)$. Note that the element $z^{-w_{0}(\lambda)}$ is central so multiplication by $z^{w_{0}(\lambda)}=z^{\lambda}$ identifies $\overline{\mathcal{W}}_{-w_{0}(\lambda)}^{-w_{0}(\mu)}$ with $\overline{\mathcal{W}}_{0}^{-w_{0}(\mu-\lambda)}$.

The corresponding embedding $\mathfrak{M}_{0}(\underline{v}, \underline{d}) \hookrightarrow \operatorname{Gr}_{G}$ is given by

$$
(x, \bar{x}, p, q) \mapsto 1+z^{-1} \sum_{l \geqslant 0} z^{-l} q_{1} \bar{x}^{l} x^{l} p_{1} .
$$

It is easy to see (by induction on l using that $\mu(x, \bar{x}, p, q)=0$) that

$$
q_{1} \bar{x}^{l} x^{l} p_{1}=q_{1} \bar{x} x \bar{x}^{l-1} x^{l-1} p_{1}=q_{1} p_{1} q_{1} \bar{x}^{l-1} x^{l-1} p_{1}=\ldots=\left(q_{1} p_{1}\right)^{l} .
$$

So we obtain the following embedding

$$
\mathcal{N} \hookrightarrow \operatorname{Gr}_{G}, x \mapsto 1+z^{-1} x+z^{-2} x^{2}+\ldots
$$

Note that we have another embedding $\mathcal{N} \hookrightarrow \operatorname{Gr}_{G}$ given by

$$
x \mapsto 1+z^{-1} x .
$$

It exactly corresponds to our second isomorphism (see remark 2.3).
Let us mention that Mircović and Vybornov have constructed isomorphism

$$
\mathfrak{M}(\underline{v}, \underline{d}) \xrightarrow{\sim} \widetilde{\mathcal{W}}_{-w_{0}(\lambda)}^{-w_{0}(\mu)}
$$

of the corresponding symplectic resolutions. Here $\widetilde{\mathcal{W}}_{-w_{0}(\lambda)}^{-w_{0}(\mu)}$ is a symplectic resolution of $\overline{\mathcal{W}}_{-w_{0}(\lambda)}^{-w_{0}(\mu)}$ that can be constructed using convolution diagram for Grassmannians.

Remark 2.5. More detailed there exists a semi-small resolution π : $\widetilde{\mathrm{Gr}}_{G}^{-w_{0} \mu} \rightarrow \overline{\mathrm{Gr}}_{G}^{-w_{0} \mu}$ which is used to define tensor structure (convolution) on $\operatorname{Perv}_{G(\mathcal{O})}\left(\operatorname{Gr}_{G}\right)$. Then $\widetilde{\mathcal{W}}_{-w_{0}(\lambda)}^{-w_{0}(\mu)}=\pi^{-1}\left(\overline{\mathcal{W}}_{-w_{0} \lambda}^{-w_{0} \mu}\right)$.

3. Idea of the proof

So our goal is to construct an isomorphism

$$
\Phi: \mathfrak{M}_{0}(\underline{v}, \underline{d}) \xrightarrow{\sim} \overline{\mathcal{W}}_{-w_{0} \lambda}^{-w_{0} \mu}
$$

Let us for simplicitly describe it on the open parts:

$$
\Phi: \mathfrak{M}_{0}^{r e g}(\underline{v}, \underline{d}) \xrightarrow{\sim} \mathcal{W}_{-w_{0} \lambda}^{-w_{0} \mu}
$$

Recall that $\mathcal{W}_{-w_{0} \lambda}^{-w_{0} \mu}$ is a moduli space of bundles together with a trivialization on \mathbb{P}^{1} such that the limit of a loop rotation action when $t \rightarrow \infty$ is $z^{-w_{0} \lambda}$ and the limit when $t \rightarrow 0$ lies in $\overline{\mathrm{Gr}}_{G}^{-w_{0} \mu}$.

Note that these conditions can be said as follows: every point $x \in \mathcal{W}_{-w_{0} \lambda}^{-w_{0} \mu}$ defines us a unique morphism $u: \mathbb{P}^{1} \rightarrow \operatorname{Gr}_{G}$ such that u is \mathbb{C}^{\times}-equivariant, $u(1)=x, u(\infty)=z^{-w_{0} \lambda}, u(0) \in \overline{\operatorname{Gr}}_{G}^{-w_{0} \mu}$ and any such morphism defines us a point of $\mathcal{W}_{-w_{0} \lambda}^{-w_{0} \mu}$.

Note now that one can think about morphisms $u: \mathbb{P}^{1} \rightarrow \operatorname{Gr}_{G}$ as about vector bundles on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with trivializations on $\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash 0\right)$.

So we see that $\mathcal{W}_{-w_{0} \lambda}^{-w_{0} \mu}$ are certain (equivariant) vector bundles on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with trivialization. It would be nice to find a simmilar description of $\mathfrak{M}^{\text {reg }}(\underline{v}, \underline{d})$.
To do so let us recall the Gieseker variety and ADHM description of it.
3.1. Gieseker variety and ADHM. Let $\operatorname{Bun}_{G L_{d}}^{v}\left(\mathbb{A}^{2}\right)$ denote the moduli space of principal $G L_{v}$-bundles on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ of second Chern class v with a trivialization at $\mathbb{P}^{1} \times \infty \cup \infty \times \mathbb{P}^{1}$.

Let V be a vector space of dimension v and D be a vector space of dimension d. We set $\mathfrak{M}_{0}^{r e g}(V, D)=\left\{(x, \bar{x}, p, q) \in \mu^{-1}(0) \mid\right.$ stable and costable $\} / G L_{v}$, where (x, \bar{x}, p, q) are Jordan quiver quadruples:

$$
x, \bar{x}: V \rightarrow V, p: D \rightarrow V, q: V \rightarrow D
$$

The ADHM isomorphism identifies $\operatorname{Bun}_{G L_{d}}^{v}\left(\mathbb{A}^{2}\right)$ with $\mathfrak{M}_{0}^{r e g}(V, D)$.
The vector bundle $E_{(x, \bar{x}, p, q)}$ corresponding to a quadruple (x, \bar{x}, p, q) can be obtained as the middle cohomology of the following monad:

$$
V \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(0,-1)
$$

$$
V \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(-1,-1) \xrightarrow{a} V \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(-1,0) \xrightarrow{b} \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}
$$

\bigoplus

$$
D \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}
$$

where

$$
a=(k x-y, h \bar{x}-z, k h q), b=(-(h \bar{x}-z), k x-y, p)
$$

$([y: k],[z: h])$ are coordinates on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $(\infty, \infty)=([1: 0],[1: 0])$.
3.2. Variety $\mathfrak{M}^{r e g}(\underline{v}, \underline{d})$ as fixed points of $\mathfrak{M}^{r e g}(V, D)$. As we see from the ADHM description to relate $\mathfrak{M}^{\text {reg }}(\underline{v}, \underline{d})$ with vector bundles on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ it remains to understand the relation between the varieties $\mathfrak{M}^{\text {reg }}(\underline{v}, \underline{d})$ and $\mathfrak{M}^{\text {reg }}(V, D)$.

Let $T \subset \mathrm{GL}(D)$ be a maximal torus. Note that we have a symplectic action $T \curvearrowright \mathfrak{M}^{r e g}(V, D)$ given by

$$
(x, \bar{x}, p, q) \mapsto\left(x, \bar{x}, p \circ u^{-1}, u \circ q\right), u \in T .
$$

We also have an action $\mathbb{C}^{\times} \curvearrowright \mathfrak{M}^{\text {reg }}(V, D)$ given by

$$
(x, \bar{x}, p, q) \mapsto\left(t^{-1} x, t \bar{x}, p, q\right), t \in \mathbb{C}^{\times}
$$

These actions commute so we obtain an action

$$
\mathbb{C}^{\times} \times T \curvearrowright \mathfrak{M}^{r e g}(V, D)
$$

Recall now that we have a co-character $-w_{0} \lambda: \mathbb{C}^{\times} \rightarrow T$. Consider a cocharacter

$$
\rho_{\lambda}: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times} \times T, t \mapsto\left(t,-w_{0} \lambda(t)\right)
$$

Proposition 3.1. We have an isomorphism

$$
\Theta: \quad \bigsqcup_{\underline{v}, \sum_{i} v_{i}=v} \mathfrak{M}_{0}^{r e g}(\underline{v}, \underline{d}) \xrightarrow{\sim}\left(\mathfrak{M}_{0}^{r e g}(V, D)\right)^{\rho_{\lambda}\left(\mathbb{C}^{\times}\right)}
$$

given by

$$
\Theta\left(x_{i}, \bar{x}_{i}, p_{i}, q_{i}\right) \mapsto\left(\oplus_{i} x_{i}, \oplus_{i} \bar{x}_{i}, \oplus_{i} p_{i}, \oplus_{i} q_{i}\right)
$$

Proof. We describe the inverse map. Let (x, \bar{x}, p, q) be a fixed point under the \mathbb{C}^{*}-action on $\mathfrak{M}_{0}^{r e g}(V, D)$ corresponding to $-w_{0}(\lambda)$. Then for every $t \in \mathbb{C}^{*}$ there exists $\rho_{V}(t) \in G L(V)$ such that

$$
\begin{equation*}
\left(t^{-1} x, t \bar{x}, p\left(-w_{0}(\lambda)(t)\right)^{-1},-w_{0}(\lambda)(t) q\right)=\left(\rho_{V}(t) x \rho_{V}(t)^{-1}, \rho_{V}(t) \bar{x} \rho_{V}(t)^{-1}, \rho_{V}(t) p, q \rho_{V}(t)^{-1}\right) \tag{3.1}
\end{equation*}
$$

Note that $\rho_{V}(t)$ is uniquely determined by t because of the freeness of $G L(V)$-action on stable and costable quadruples. In particular ρ_{V} defines a cocharacter of $G L(V)$. We decompose V into a direct sum $\oplus V_{i}$ (where V_{i} is the t^{-i}-eigenspace of ρ_{V}) and similarly decompose D into a direct sum $\oplus D_{i}$ with respect to $-w_{0}(\lambda)$. It is easy to see that the condition (3.1) implies that $\forall i \subset \mathbb{Z}, x\left(V_{i}\right) \subset V_{i+1}, \bar{x}\left(V_{i}\right) \subset V_{i-1}, p\left(D_{i}\right) \subset V_{i}, q\left(V_{i}\right) \subset D_{i}$. So (x, \bar{x}, p, q) defines a point in a quiver variety of type A with vertices numbered by integers such that $\sum_{i=-\infty}^{+\infty} v_{i}=v$, and the framing is d. The inverse map is constructed.

4. More technical details

So the construction of the morphism $\Phi: \mathfrak{M}^{\text {reg }}(\underline{v}, \underline{d}) \rightarrow \mathcal{W}_{-w_{0}(\lambda)}^{-w_{0}(\mu)}$ goes as follows. We start from a quadruple $\left(x_{i}, \bar{x}_{i}, p_{i}, q_{i}\right) \in \mathfrak{M}^{r e g}(\underline{v}, \underline{d})$ and associate to it (via $\left.A D H M\right)$ a \mathbb{C}^{\times}-equivariant vector bundle $E=E_{(x, \bar{x}, p, q)}$ together with a trivialization at the cross $\mathbb{P}^{1} \times \infty \cup \infty \times \mathbb{P}^{1}$. Then \mathbb{C}^{\times}-equivariance of E allows us to uniquely extend the trivialization of E on $\mathbb{P}^{1} \times \infty$ to the trivialization of E on $\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash\{0\}\right)$, hence, $\left.E\right|_{1 \times \mathbb{P}^{1}}$ defines a point of the Affine Grassmannian Gr_{G} to be denoted $\eta(E)$. Now

$$
\Phi\left(\left(x_{i}, \bar{x}_{i}, p_{i}, q_{i}\right)\right):=\left.z^{-w_{0} \lambda} E\right|_{1 \times \mathbb{P}^{1}}
$$

We see that if we want to compute Φ explicitly the only thing that we have to do is to understand how one can construct this extension of our trivialization of E on $\mathbb{P}^{1} \times \infty$ to the trivialization of E on $\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash\{0\}\right)$ explicitly.

Monad description helps here: recall that E is the middle cohomology of the following monad:

$$
V \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(0,-1)
$$

\bigoplus

$$
V \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(-1,-1) \xrightarrow{a}>V \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(-1,0) \xrightarrow{b} \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}
$$

$$
D \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}
$$

where

$$
a=(k x-y, h \bar{x}-z, k h q), b=(-(h \bar{x}-z), k x-y, p)
$$

$([y: k],[z: h])$ are coordinates on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $(\infty, \infty)=([1: 0],[1: 0])$.
We want to describe the trivialization of E restricted to $\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash 0\right)$. For this it suffices to construct a map $\left.D \otimes \mathcal{O}_{\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash 0\right)} \rightarrow \operatorname{Ker}(\mathrm{b})\right|_{\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash 0\right)}$ transversal to $\left.\operatorname{Im}(\mathrm{a})\right|_{\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash 0\right)}$. It is easy to see that the map:

$$
\begin{gathered}
D \otimes \mathcal{O}_{\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash 0\right)} \xrightarrow{\tau_{1}} V \otimes \mathcal{O}_{\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash 0\right)}(0,-1) \oplus V \otimes \mathcal{O}_{\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash 0\right)}(-1,-1) \oplus D \otimes \mathcal{O}_{\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash 0\right)}, \\
\tau_{1}=\left((h \bar{x}-z)^{-1} p, 0, \mathrm{Id}\right)
\end{gathered}
$$

satisfies the requirement.
Note that τ_{1} is well defined because $h \bar{x}$ is nilpotent $\left(\bar{x}=\oplus \bar{x}_{i}\right.$, and \bar{x}_{i} sends V_{i} to V_{i-1}, so that $\oplus \bar{x}_{i}$ acts nilpotently on $\left.\oplus V_{i}\right)$, hence $h \bar{x}-z$ is invertible when restricted to $\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash 0\right)$ (since $z \neq 0$ on $\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \backslash 0\right)$ and $h \bar{x}$ is nilpotent). We should mention that transvesality of τ_{1} to the image of a follows from the fact that $h \bar{x}-z$ invertible, hence, nonzero for $z \neq 0$.

For the same reasons the map:

$$
\begin{gathered}
D \otimes \mathcal{O}_{\left(\mathbb{P}^{1} \backslash 0\right) \times \mathbb{P}^{1}} \xrightarrow{\tau_{2}} V \otimes \mathcal{O}_{\left(\mathbb{P}^{1} \backslash 0\right) \times \mathbb{P}^{1}}(0,-1) \oplus V \otimes \mathcal{O}_{\left(\mathbb{P}^{1} \backslash 0\right) \times \mathbb{P}^{1}}(-1,-1) \oplus D \otimes \mathcal{O}_{\left(\mathbb{P}^{1} \backslash 0\right) \times \mathbb{P}^{1}}, \\
\tau_{2}=\left(0,(y-k x)^{-1} p, \mathrm{Id}\right)
\end{gathered}
$$

induces the trivialization of $E_{(x, \bar{x}, p, q)}$ restricted to $\left(\mathbb{P}^{1} \backslash 0\right) \times \mathbb{P}^{1}$. Note that these two trivializations agree at the point (∞, ∞) and extend the trivialization of E restricted to two infinite lines. Now we can construct $\eta(E)$. We just have to calculate the transition function $\left(\tau_{1}^{-1} \circ \tau_{2}\right)_{\mid 1 \times\left(\mathbb{P}^{1} \backslash\{0, \infty\}\right)}$ it is the point in $\operatorname{Gr}_{G L_{d}}$ corresponding to $E_{\mid 1 \times\left(\mathbb{P}^{1} \backslash\{0, \infty\}\right)}$ and the trivialization induced by τ_{1}. It is easy to see that the corresponding point is

$$
\eta(E)=1+q(\bar{x}-z)^{-1}(x-1)^{-1} p .
$$

This finishes the proof.

References

[BF1] A. Braverman and M. Finkelberg, Pursuing the double affine Grassmannian I: transversal slices via instantons on A_{k}-singularities, Duke Math. J. 152 (2010), no. 2, 175-206.
[Hen] A. Henderson, Involutions on the affine Grassmannian and moduli spaces of principal bundles, preprint 2015, arXiv:1512.04254.
[Maf] A. Maffei, Quiver varieties of type A, Comment. Math. Helv. 80 (2005), 1-27.
[MV] I. Mirković and M. Vybornov (with an appendix by V. Krylov), Comparison of quiver varieties, loop Grassmannians and nilpotent cones in type A, arXiv:1905.01810.

